ELECTRO サンプル問題

1 ケーブル

ケーブル断面をモデル化して、内部の電位分布を求める。

(1) モデル形状

形状モデラーで2D断面形状を作成する。 円(中心と半径を入力)コマンドで、各円を 作成する。また、断面中心から放射状に直線 を描き、円との交差点を求め、円を分割する。

作成した形状 ポイント数 44 セグメント数 30 リージョン数 15

(注)ポイントは上図のピンク又は水色の点。セグメントは直線又は曲線。ピンクのポイントはセグメントの結合点を表し、水色のポイントは曲線の中点か、他のセグメントに結合していない点を表す。リージョンはセグメントで囲まれた領域で、物性値などをセットすることができる。

(2) 物性値

物性値の設定は、使用材料を選び、それを設 定するリージョンを選択する。

水色	比誘電率	1	銅線
ピンク	比誘電率	2.24	
青	比誘電率	5	
緑	比誘電率	1	鉄
その他の)白色は空間	間(比誘電	率 1)を表す。

(3) 境界条件

右下の銅線は 1 V、右上の左下の銅線は -1 V、左上は 0 V に設定する。 鉄は 0 V に設定する。

設定方法はまず、Boundary Conditions > Voltage (Constant) を選択する。次に電圧を設 定するセグメントを選択し、その電圧を入力する。

(4) メッシュ

Solver Setup	\mathbf{X}
Method of solution	Boundary Element 💌
Matrix Solver Type	Auto 💌
Iterative Accuracy	1e-006
Manual/Self-adaptive	Self-Adapt 💌
Self-adaptive Accuracy	0.01
Accuracy / Speed Factor	1
Material Non-linear Convergence Factor	0.01
Finite Element Type	Linear 💌
ОК	Cancel

ソルバー設定のダイアログ (注)境界要素は空間との境界、及び物性値 の異なる境界に、1Dの要素を作成する。

(5) 解析結果

🖠 Field Analysis Result 📃 🗖 🗙			
<u>V</u> alues <u>O</u> ptions	<u>U</u> nderla	ay Integrate	
View Type		Display Form	
Voltage	-	Contours 💌	
Component		Complex	
Magnitude	-	Real 💌	
Grid Density		Selection	
Medium Density	-	On Plane 🗾	
New Plot		Apply Settings	

解析ダイアログ

メッシュはデフォルト(初期設定)がセルフ アダプティブなので、ユーザーは何も設定し なくてもよい。Analysis > Solve を選択す ると、求解がスタートする。メッシュは自動 的に作成される。

境界要素(要素数 106)

電位コンター図

2 高電圧絶縁体

高電圧(7.5 万ボルト)がかかる絶縁体を軸対称でモデル化し、その周りの電位分布を求める。

(1) 形状

形	状モデラーで、左図のような形状を作成する。
ポ	イント数 36
l t	グメント数 25
ע 🗸	ージョン数 3
軸	対称でモデル化するので、+X の断面のみ作成する。
	対称であることの設定は、次のダイアログで Y 軸周りの 転対称を選択する。
3	🚺 Physics Global Setup 🛛 🔀
2	Geometry Model Type
5	Y-Rotational Symmetric 💌 At X = 0 m
R	Solver Type Fields
5	Operation Mode Static 💌
	Material Default Permittivity 💌
P	Frequency 60 Hz
Ц	🗖 Balance Charge
形状モデル	OK Cancel

物理グローバル設定ダイアログ

(2) 材料の設定

Physics > Materials を選択する。Materials ダイアログの材料リストから、使用する材料を選択する。又は、新しく材料を作成する。材料は色で区別される。

🚪 Materials		? 🛛
Material List	Bakelite	•
Display/Modify	Create New	Delete
Assign Material	Inquire Material	Close

材料設定ダイアログ

Assign Material を選択し、この材料を設定するリージョンを選択する。

材料

境界条件 上部導体は 75000 V 下部導体は 0 V メッシュ分布 (BEM) 要素数 147

(3) 解析結果

Analysis > Field Results ... を選 択して、解析結果表示のダイアログを 表示する。

電位コンターを選択して表示する。

電位コンター図

3 静電容量

ストリップラインの静電容量(キャパシタンス)を求める。

Capacitar	nce Matrix (pF)
197.4	-56.11
-56.11	197.4

Impedance Matrix (Ohms) 47.77 16.32 16.32 47.77

(1) 形状

(2) 静電容量の計算では、ソルバータイプをCircuit Parameters にする。

Physics Global Setup				
Geometry Model Typ	e			
Two-D	 Length 1 	m		
Solver Type	Circuit Parameters 💌			
Operation Mode	Static 💌			
Material Default	Permittivity 💌			
Frequency	0 Hz			
🗖 Balance Charge				
OK	(Cancel)			

(3) 材料の設定

比誘電率10の材料を基盤に設定する。

(4) 導体

静電容量の計算では、導体又はグラウンドを設定する必要がある。

導体は番号を付けて区別する。Physics > Surface Conductors > Assign Conductores を 選択し、セグメントを選択してそれに(導体)番号を付番する。

ストリップライン上面の2つのセグメントを、導体(ピンク)として選択し、番号1と2 を設定する。

同様に Assign Ground を選択して、下面のセグメントをグラウンド(水色)に設定する。

(5) モデルを解く

Solution > Solve を選択すると、自動的にメッシュを作成して、解を求める。

メッシュ分布 (要素数 44, BEM)

(6) 静電容量を求める

Analysis > Capacitance を選択する。静電容量を計算する2つの導体を番号で指定する。 例えば、1と1を指定すると、197.4 pF という数値が表示される。同様に1と2、2と1及 び2と2を指定すると、静電容量マトリックスの各成分を求めることができる。